If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-43=0
a = 2; b = 16; c = -43;
Δ = b2-4ac
Δ = 162-4·2·(-43)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-10\sqrt{6}}{2*2}=\frac{-16-10\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+10\sqrt{6}}{2*2}=\frac{-16+10\sqrt{6}}{4} $
| 5x+16=9x-31 | | 2(x-7)-4=4x-14 | | 7x-8+5x+4=180 | | -10n+56=-4n | | 22p+5=16 | | 22p+15=16 | | 8-3t=32-7t | | 5x+8+6x+4=45 | | 3x+19=4x+14 | | 8a+7=5a | | 3=-3x+7x | | 6.7+8x=17 | | -15+3/4=x | | 4z+5=13+2z | | x2+7x+49=0 | | x2-7x+49=0 | | .157=6x | | 4+4x=9.6 | | .0002/x=8 | | (4+x)/33=-432 | | (6x+70)=(10x+18) | | (4x+42)=(9x-3) | | 1.49x1.49=x | | 14+4t/9=18 | | x+(0.18x)=135000 | | 6m-3/7=2m+1/5 | | 4(x-5)=-31 | | 7a-3=12 | | 11/12=x108 | | 11c=-4 | | c+7=27 | | 2x+67777x=X |